Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 67(11): e0058923, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37819090

RESUMEN

Drug resistance to commercially available antimalarials is a major obstacle in malaria control and elimination, creating the need to find new antiparasitic compounds with novel mechanisms of action. The success of kinase inhibitors for oncological treatments has paved the way for the exploitation of protein kinases as drug targets in various diseases, including malaria. Casein kinases are ubiquitous serine/threonine kinases involved in a wide range of cellular processes such as mitotic checkpoint signaling, DNA damage response, and circadian rhythm. In Plasmodium, it is suggested that these protein kinases are essential for both asexual and sexual blood-stage parasites, reinforcing their potential as targets for multi-stage antimalarials. To identify new putative PfCK2α inhibitors, we utilized an in silico chemogenomic strategy involving virtual screening with docking simulations and quantitative structure-activity relationship predictions. Our investigation resulted in the discovery of a new quinazoline molecule (542), which exhibited potent activity against asexual blood stages and a high selectivity index (>100). Subsequently, we conducted chemical-genetic interaction analysis on yeasts with mutations in casein kinases. Our chemical-genetic interaction results are consistent with the hypothesis that 542 inhibits yeast Cka1, which has a hinge region with high similarity to PfCK2α. This finding is in agreement with our in silico results suggesting that 542 inhibits PfCK2α via hinge region interaction.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Plasmodium , Antimaláricos/farmacología , Quinasa de la Caseína II/antagonistas & inhibidores , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria Falciparum/parasitología , Plasmodium/metabolismo , Plasmodium falciparum
2.
ACS Omega ; 8(37): 34084-34090, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37744849

RESUMEN

In tropical and subtropical areas, malaria stands as a profound public health challenge, causing an estimated 247 million cases worldwide annually. Given the absence of a viable vaccine, the timely and effective treatment of malaria remains a critical priority. However, the growing resistance of parasites to currently utilized drugs underscores the critical need for the identification of new antimalarial therapies. Here, we aimed to identify potential new drug candidates against Plasmodium falciparum, the main causative agent of malaria, by analyzing the transcriptomes of different life stages of the parasite and identifying highly expressed genes. We searched for genes that were expressed in all stages of the parasite's life cycle, including the asexual blood stage, gametocyte stage, liver stage, and sexual stages in the insect vector, using transcriptomics data from publicly available databases. From this analysis, we found 674 overlapping genes, including 409 essential ones. By searching through drug target databases, we discovered 70 potential drug targets and 75 associated bioactive compounds. We sought to expand this analysis to similar compounds to known drugs. So, we found a list of 1557 similar compounds, which we predicted as actives and inactives using previously developed machine learning models against five life stages of Plasmodium spp. From this analysis, two compounds were selected, and the reactions were experimentally evaluated. The compounds HSP-990 and silvestrol aglycone showed potent inhibitory activity at nanomolar concentrations against the P. falciparum 3D7 strain asexual blood stage. Moreover, silvestrol aglycone exhibited low cytotoxicity in mammalian cells, transmission-blocking potential, and inhibitory activity comparable to those of established antimalarials. These findings warrant further investigation of silvestrol aglycone as a potential dual-acting antimalarial and transmission-blocking candidate for malaria control.

3.
Toxicol Sci ; 189(2): 250-259, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-35916740

RESUMEN

In the United States, a pre-market regulatory submission for any medical device that comes into contact with either a patient or the clinical practitioner must include an adequate toxicity evaluation of chemical substances that can be released from the device during its intended use. These substances, also referred to as extractables and leachables, must be evaluated for their potential to induce sensitization/allergenicity, which traditionally has been done in animal assays such as the guinea pig maximization test (GPMT). However, advances in basic and applied science are continuously presenting opportunities to employ new approach methodologies, including computational methods which, when qualified, could replace animal testing methods to support regulatory submissions. Herein, we developed a new computational tool for rapid and accurate prediction of the GPMT outcome that we have named PreS/MD (predictor of sensitization for medical devices). To enable model development, we (1) collected, curated, and integrated the largest publicly available dataset for GPMT results; (2) succeeded in developing externally predictive (balanced accuracy of 70%-74% as evaluated by both 5-fold external cross-validation and testing of novel compounds) quantitative structure-activity relationships (QSAR) models for GPMT using machine learning algorithms, including deep learning; and (3) developed a publicly accessible web portal integrating PreS/MD models that can predict GPMT outcomes for any molecule of interest. We expect that PreS/MD will be used by both industry and regulatory scientists in medical device safety assessments and help replace, reduce, or refine the use of animals in toxicity testing. PreS/MD is freely available at https://presmd.mml.unc.edu/.


Asunto(s)
Alérgenos , Pruebas de Toxicidad , Algoritmos , Animales , Cobayas , Aprendizaje Automático , Relación Estructura-Actividad Cuantitativa , Pruebas de Toxicidad/métodos
4.
Environ Health Perspect ; 130(2): 27012, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35192406

RESUMEN

BACKGROUND: Modern chemical toxicology is facing a growing need to Reduce, Refine, and Replace animal tests (Russell 1959) for hazard identification. The most common type of animal assays for acute toxicity assessment of chemicals used as pesticides, pharmaceuticals, or in cosmetic products is known as a "6-pack" battery of tests, including three topical (skin sensitization, skin irritation and corrosion, and eye irritation and corrosion) and three systemic (acute oral toxicity, acute inhalation toxicity, and acute dermal toxicity) end points. METHODS: We compiled, curated, and integrated, to the best of our knowledge, the largest publicly available data sets and developed an ensemble of quantitative structure-activity relationship (QSAR) models for all six end points. All models were validated according to the Organisation for Economic Co-operation and Development (OECD) QSAR principles, using data on compounds not included in the training sets. RESULTS: In addition to high internal accuracy assessed by cross-validation, all models demonstrated an external correct classification rate ranging from 70% to 77%. We established a publicly accessible Systemic and Topical chemical Toxicity (STopTox) web portal (https://stoptox.mml.unc.edu/) integrating all developed models for 6-pack assays. CONCLUSIONS: We developed STopTox, a comprehensive collection of computational models that can be used as an alternative to in vivo 6-pack tests for predicting the toxicity hazard of small organic molecules. Models were established following the best practices for the development and validation of QSAR models. Scientists and regulators can use the STopTox portal to identify putative toxicants or nontoxicants in chemical libraries of interest. https://doi.org/10.1289/EHP9341.


Asunto(s)
Alternativas a las Pruebas en Animales , Simulación por Computador , Sustancias Peligrosas , Animales , Cosméticos/toxicidad , Sustancias Peligrosas/toxicidad , Plaguicidas/toxicidad , Preparaciones Farmacéuticas , Relación Estructura-Actividad Cuantitativa
5.
Biomolecules ; 11(3)2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808643

RESUMEN

With about 400,000 annual deaths worldwide, malaria remains a public health burden in tropical and subtropical areas, especially in low-income countries. Selection of drug-resistant Plasmodium strains has driven the need to explore novel antimalarial compounds with diverse modes of action. In this context, biodiversity has been widely exploited as a resourceful channel of biologically active compounds, as exemplified by antimalarial drugs such as quinine and artemisinin, derived from natural products. Thus, combining a natural product library and quantitative structure-activity relationship (QSAR)-based virtual screening, we have prioritized genuine and derivative natural compounds with potential antimalarial activity prior to in vitro testing. Experimental validation against cultured chloroquine-sensitive and multi-drug-resistant P. falciparum strains confirmed the potent and selective activity of two sesquiterpene lactones (LDT-597 and LDT-598) identified in silico. Quantitative structure-property relationship (QSPR) models predicted absorption, distribution, metabolism, and excretion (ADME) and physiologically based pharmacokinetic (PBPK) parameters for the most promising compound, showing that it presents good physiologically based pharmacokinetic properties both in rats and humans. Altogether, the in vitro parasite growth inhibition results obtained from in silico screened compounds encourage the use of virtual screening campaigns for identification of promising natural compound-based antimalarial molecules.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Artemisininas/farmacología , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad Cuantitativa , Quinina/farmacología
6.
Chem Res Toxicol ; 34(2): 258-267, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-32673477

RESUMEN

Safety assessment is an essential component of the regulatory acceptance of industrial chemicals. Previously, we have developed a model to predict the skin sensitization potential of chemicals for two assays, the human patch test and murine local lymph node assay, and implemented this model in a web portal. Here, we report on the substantially revised and expanded freely available web tool, Pred-Skin version 3.0. This up-to-date version of Pred-Skin incorporates multiple quantitative structure-activity relationship (QSAR) models developed with in vitro, in chemico, and mice and human in vivo data, integrated into a consensus naïve Bayes model that predicts human effects. Individual QSAR models were generated using skin sensitization data derived from human repeat insult patch tests, human maximization tests, and mouse local lymph node assays. In addition, data for three validated alternative methods, the direct peptide reactivity assay, KeratinoSens, and the human cell line activation test, were employed as well. Models were developed using open-source tools and rigorously validated according to the best practices of QSAR modeling. Predictions obtained from these models were then used to build a naïve Bayes model for predicting human skin sensitization with the following external prediction accuracy: correct classification rate (89%), sensitivity (94%), positive predicted value (91%), specificity (84%), and negative predicted value (89%). As an additional assessment of model performance, we identified 11 cosmetic ingredients known to cause skin sensitization but were not included in our training set, and nine of them were accurately predicted as sensitizers by our models. Pred-Skin can be used as a reliable alternative to animal tests for predicting human skin sensitization.


Asunto(s)
Cosméticos/efectos adversos , Pruebas Cutáneas , Piel/efectos de los fármacos , Animales , Teorema de Bayes , Cosméticos/química , Humanos , Ratones , Relación Estructura-Actividad Cuantitativa
7.
ChemMedChem ; 16(7): 1093-1103, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33247522

RESUMEN

Increasing reports of multidrug-resistant malaria parasites urge the discovery of new effective drugs with different chemical scaffolds. Protein kinases play a key role in many cellular processes such as signal transduction and cell division, making them interesting targets in many diseases. Protein kinase 7 (PK7) is an orphan kinase from the Plasmodium genus, essential for the sporogonic cycle of these parasites. Here, we applied a robust and integrative artificial intelligence-assisted virtual-screening (VS) approach using shape-based and machine learning models to identify new potential PK7 inhibitors with in vitro antiplasmodial activity. Eight virtual hits were experimentally evaluated, and compound LabMol-167 inhibited ookinete conversion of Plasmodium berghei and blood stages of Plasmodium falciparum at nanomolar concentrations with low cytotoxicity in mammalian cells. As PK7 does not have an essential role in the Plasmodium blood stage and our virtual screening strategy aimed for both PK7 and blood-stage inhibition, we conducted an in silico target fishing approach and propose that this compound might also inhibit P. falciparum PK5, acting as a possible dual-target inhibitor. Finally, docking studies of LabMol-167 with P. falciparum PK7 and PK5 proteins highlighted key interactions for further hit-to lead optimization.


Asunto(s)
Antimaláricos/farmacología , Inteligencia Artificial , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/metabolismo , Inhibidores de Proteínas Quinasas/química , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad
8.
Comput Struct Biotechnol J ; 17: 352-361, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949306

RESUMEN

Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania (NTD) endemic in 98 countries. Although some drugs are available, current treatments deal with issues such as toxicity, low efficacy, and emergence of resistance. Therefore, there is an urgent need to identify new targets for the development of new antileishmanial drugs. Protein kinases (PKs), which play an essential role in many biological processes, have become potential drug targets for many parasitic diseases. A refined bioinformatics pipeline was applied in order to define and compare the kinomes of L. infantum and L. braziliensis, species that cause cutaneous and visceral manifestations of leishmaniasis in the Americas, the latter being potentially fatal if untreated. Respectively, 224 and 221 PKs were identified in L. infantum and L. braziliensis overall. Almost all unclassified eukaryotic PKs were assigned to six of nine major kinase groups and, consequently, most have been classified into family and subfamily. Furthermore, revealing the kinomes for both Leishmania species allowed for the prioritization of potential drug targets that could be explored for discovering new drugs against leishmaniasis. Finally, we used a drug repurposing approach and prioritized seven approved drugs and investigational compounds to be experimentally tested against Leishmania. Trametinib and NMS-1286937 inhibited the growth of L. infantum and L. braziliensis promastigotes and amastigotes and therefore might be good candidates for the drug repurposing pipeline.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...